
Yilmaz' theory of gravitation and some modifications

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1969 J. Phys. A: Gen. Phys. 2 521

(http://iopscience.iop.org/0022-3689/2/5/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/2/5
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I X T E D  I N  G R E A T  B R I T A I N  

Yilmaz’ theory of gravitation and some modifications 

B. 0. J. TUPPERf and C. PAGE 
Department of Mathematics, University of Exeter 
MS. received 16th September 1968, i n  revised fo rm 19th May 1969 

Abstract. An apparent error in the formulation of Yilmaz’ theory of gravitation is 
corrected. Yilmaz’ field equations are unaffected but the corrected theory suggests 
alternative field equations. 

1. Introduction 
Yilmaz (1958) has suggested a new approach to general relativity based on a covariant 

generalization of the theory of a massless scalar field 4. Hoffmann (1960) has drawn 
attention to some difficulties in this theory and discussed certain modifications, and 
Dowker (1965) introduced a scalar theory of gravitation based on ideas similar to those 
of Yilmaz. In  both these cases the authors start by considering the energy tensor of the 
scalar field. This energy tensor is correct, but Yilmaz’ derivation of it from the Lagrangian 
density contains an error. 

In  this article we illustrate Yilmaz’ error and some of its consequences. We shall 
also consider the results of alternative field equations to those used by Yilmaz. 

The  summation convention is used throughout. Greek suffixes take the values (0, 1 ,2 ,3)  
and Latin suffixes the values (1, 2, 3). 

2. Yilmaz’ theory 
Yilmaz considers a space-time continuum 

ds2 = g,, dX’L dXv 

and supposes that a massless scalar field +(x) is d e h e d  in this continuum. He seeks a 
solution of his field equations such that the g,, are funittions of 4 only, i.e. in the case of 
a static spherically symmetric space-time he requires the coordinates to be chosen so 
that the solution is of the form 

ds2 = e2A dt2- e2“(dx2 + dy2 + dz2) (1) 
where A, U are functions of 4 only. 

action 
The equations of motion of the field are obtained from the principle of stationary 

SJL(+, +,)( -g)’” d4x = 0 

where L is a scalar function of position and 4, 4, = +/axfi are the quantities to be varied. 
Yilmaz obtains as the equation of motion 

where the semicolon denotes covariant differentiation with respect to xu. This equation 
is obtained by assuming that, for the purpose of the variation, the ( -g)ll2 in the integral (2) 
is independent of 4, although there seems little doubt that Yilmaz intended to impose 
his fundamental requirement g,, = guV(q5) before the variation. 

There is also another serious difficulty with equation (3). The quantity aL/&b is 
usually calculated by varying #I and keeping 4, constant, but this is not a covariant pro- 
cedure. Consequently in this conventional approach aL/@ is not a scalar, which raises 

t Now on leave of absence at Department of Mathematics, University of New Brunswick, 
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problems since the second term of (3) is undoubtedly a scalar. This difficulty can be 
overcome by introducing a covariant procedure for calculating aL/a+ such as by varying 
#J subject to +g;v = 0. In  this case aL/a+ is a true scalar and (3) is correct, but there is 
no evidence to suggest that Yilmaz intended to use other than the conventional procedure, 
so we shall take the view that (3) is incorrect. 

The  usual stress-energy tensor for a scalar field, viz. 

is obtained, and from (3) and (4) it follows that this tensor has vanishing covariant di- 
vergence, i.e. 

T;;Y = 0. 

In  order to find the actual form of L for the theory, Yilmaz proposes that the equation 
of motion (3) should be identical with the d’illembert equation 

= 0 
and asserts that a Lagrangian satisfying this requirement is 

1 I 

( 5 )  

However, if this expression for L is substituted into (3), the equation of motion is identical 
with ( 5 )  if, and only if, 

2L _ -  - 0, 
2+ 

( 7 )  

From (6) this implies thatgUY is independent of +, which is contrary to Yilmaz’ fundamental 
assumption. 

3. The corrected theory 
We now investigate the result of taking into account the dependence of (-g)1”2 on + in the integral (2) when carrying out the variation. For this purpose we define the scalar 

density -q+’ +g) by 
9 = L( -g)1’2 

so that (2) becomes 

8 J qc$, +U) d 4 X  = 0 

which leads to the equation of motion 

where the comma denotes partial differentiation. The corresponding stress-energy tensor 
density is 

From (8) and the relation 

it follows that Y; has vanishing ordinary divergence, i.e. 

= 0. 
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Turning our attention to equation (8), we note that, since ( -g)lI2 is independent of 
the second term of (8) is, apart from sign, 

if L is given by (6 ) .  Hence equation (8) is identical with equation ( S ) ,  provided that 

2 3  -- - 0. 
8 4  

Unlike equation (7)) this does not imply that guv is independent of 4. Since 4 is time- 
independent, equation (1 1) is 

a 
- (( -g)1’z(g114141 +g2V242 +g334343)) = 0 
84 

which, using the metric (l), leads to 

J;+& = 0 

v2+ = 0 

where the bar denotes differentiation with respect to +. This condition reduces ( 5 )  to 

so that 4 can be taken to be the usual Newtonian gravitational potential, i.e. 

m 4 = -  
Y 

where the units are chosen so that c = G = 1. 

(13) 

4. The field equations 

following field equations : 
Yilmaz’ energy tensor (4) has vanishing covariant divergence, so he proposes the 

Gi 2 Ri-@iR = 8nT: (14) 
since the Einstein tensor G, also has vanishing covariant divergence. 

From equation (9) we see that, since ( -g)lI2 is independent of +,,, 

Ti( -g)ll2 
so that 

9;,v 2 {(-g)1’2T;),v = (-g)1’2T,”;v+I‘~,T~(-g)1r2. (15) 
Since the ordinary divergence of Yi vanishes, it follows that, in general, Tl;v # 0, so 
Yilmaz’ field equations (14) will not hold unless the last term on the right-hand side of 
(15) is zero. We shall now show that for the Lagrangian (6) this term is zero: 
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For the Lagrangian (6) we have, from (10) and (1 l), 

From equations (16) and (17) we find 
v u  8L iiL 

4 0  G C U  
r U u T v  = r u u 4 v  -7- +Lou - n 4b .U 

Hence 

provided that 
2- v = 0 3 T,YiV = 0 

This condition is easily seen to be satisfied by the Lagrangian (6), so Yilmaz’ field equa- 
tions (14) are still valid for his choice of Lagrangian, despite the error in his equation of 
motion. 

5. The three classical tests 
Before discussing the solution of Yilmaz’ field equations, we shall digress to note the 

relationship between certain four-dimensional spherically symmetric isotropic space-times 
and the three classical tests of general relativity: viz. the deflection of light, the gravi- 
tational red shift and the advance of the perihelion of Mercury, as predicted by the 
Schwarzschild solution. 

It is easily shown (see Page and Tupper 1968) that for 4 given by (13) the space-time 

ds2 = (1 + a,+ + a#) dt2 - (1 + b,+)(dx2 + dy2 + d 2 )  

gives the following values (Schwarzschild values taken as unity) for the three tests : 

(18) I. deflection of light rays : a(bl - al) 
gravitational red shift : - &a, 
advance of perihelion : &(a1’ - a2 - albl) 

I n  addition, we must have a, < 0 for the central mass to attract the test particle and 
a, = -2  for the weak-field approximation to correspond to the Newtonian theory. 

From (18) we see that any space-time with a metric which can be expanded in ascending 
powers of 4 = mlr in the form 

ds2 = (1 - 24 + 24’) dt2 - (1 + 24)(dx2 + dy2 + d+) (19) 
will give the Schwarzschild values for the three tests and will also satisfy the additional 
conditions. 



Yilmaz' theory of gravitation and some modijications 525 

6. Yilmaz' solution 

is found to be 
The  solution of Yilmaz' field equations (14) for the metric (1) and for TUy given by (4) 

ds2 = e-2@dt2 -e20(dx2 + dy2 + dz2). (20) 
This solution is found from the field equations by using equations (5) and (12). The  
ten field equations reduce to the following three equations for o: 

When ( p ,  U) = (i, j ) ,  i = j :  

(p, U) = ( i , j ) ,  i # j :  
(I*, U> = (0, 0): 

-2 = 1 
52 = 1 

2b+@ = 1. 

When (p, v) = (0, i )  or (i, 0) ,  the equations are identically zero. 
From the equations we see that 

U = & + + constant 

and the final choice U = 4, giving the metric (20), is governed by (19), so that the three 
tests and the additional conditions are satisfied. 

The  remarkable feature of Yilmaz' field equations is that they are ten equations for 
only one unknown scalar function, and yet they lead to a solution. 

It should be noted that, although Yilmaz gives only (20) as the solution to his field 
equations, it is not clear that this is the only acceptable solution since, in his formulation 
of the theory, the condition (12) does not arise. The  corrected theory has the advantage 
of reducing the solutions to the two possibilities U = - h = & 4, 

7. The scalar field equation 
For a scalar theory it is usual to have one scalar field equation, rather than ten equations 

as in Yilmaz' theory (e.g. see Trautman 1965, p. 149). We now investigate the consequences 
of replacing (14) by the single equation 

G = 8nkT (21) 
where G = G;, T = Ti and we have introduced a coupling constant k. It should be noted 
that, if k had been introduced into the field equations of the previous section, it would 
necessarily have taken unit value if the Schwarzschild values for the three tests were to  
be obtained. 

Equation (21) leads to the equation 

E + @  = K .  (22) 
When k = n2 > 0 this equation has the solution 

e" = cosh n+ + A sinh n+ 
where A is a constant, By expanding this expression in ascending powers of 4 we find 

e2" = 1+2An+ 
e-2u  = 1 -2An$+(3A2 - l)n2+2. 

From these expressions we see that, apart from the advance of the perihelion, the 
Schwarzschild values are obtained and the other conditions satisfied if we take 

An= 1. 
Then we have 

1 
n 

e" = cosh n+ + - sinh nq5 
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and, to the required power of $, 

B. 0. J.  Tupper and C. Page 

eZu = 1+2$ 
e-2u  = 1-2$+(3-n2)$. 

From (18) the advance of the perihelion is (5+n2)/6 of the Schwarzschild value. 
Hence, for k = n2 > 0, the space-time 

(dx2 + dy2 + dz2) 
n n 

satisfies the scalar field equation (21) and gives the Schwarzschild values for the deflection 
of light rays and the gravitational red shift. For the advance of the perihelion the value 
will be more than 4 of the Schwarzschild value and will be near the Schwarzschild value 
when k is near unity. 

When k = n2 = 1, the metric is of Yilmaz’ form (20) and so satisfies the three tests. 
The  case k < 0 may be disregarded since the solution of equation (22) is then in terms 

of circular functions. 

8. Alternative field equations 
The fact that the equation of motion (13) leads.& the stress-energy tensor density 

Yl, with vanishing ordinary divergence, suggests that we could form field equations for 
the theory by equating 9; with one of the stress-energy complexes used in general 
relativity. We shall consider here two such field equations, using, respectively, the Einstein 
and M0ller complexes given by (Trautman 1962, p. 190): 

where U;n is the ‘superpotential’ of von Freud (1939), and 

Under linear transformations both complexes transform like tensor densities of weight 1, 
unlike the Landau-Lifshitz complex which transforms like a tensor density of weight 2 
(Trautman 1962, p. 191). Since 7; is a tensor density of weight 1, we shall attempt to 
form field equations by equating 9-; with or MO; only. I t  should be noted that both 
complexes are antisymmetric in v and A, and so have vanishing divergence, in common 
with Ti. 

W7e are thus led to suggest the following possible field equations: 

E%; = 9-; (24) or 

= 7’ i l ‘  (25 ) 
However, it is easily shown that, with the metric (1) and the Lagrangian (6), neither of 
these equations has a solution. This is disappointing, but not particularly surprising, 
since they each form a set of ten equations for effectively one unknown quantity, viz. the 
o (or A) in the metric (1). 

Bearing in mind the results of the previous section, we suggest that equations (24) 
and (25) should be replaced by the contracted equations 

and 
M 0  = kF 

where = EO:, = Y = 9: and k is a coupling constant. 
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i.e. 

Using equations ( 5 )  and (12) we find that (26) reduces to 

a = k  

U = +k$' + ~4 
where U is a constant and we have used the condition U + 0 as C$ + 0. Hence, to the 
second order in 4 ,  

e2u = exp(kC$2+2a#) = 1 +2a$ 
e-2u = exp( - k#2 - 2 x 4 )  = 1 - ZU$ + ( 2 2  - k)C$2. 

For the weak-field approximation to agree with Newtonian theory, we must have a = 1. 
We then find the following values for the three tests, as compared with the Schwarzschild 
values : 

advance of the perihelion: 1 + &k 

deflection of light rays: 1 
gravitational red shift: 1. 

Since k can take any non-zero value, the field equation (26) will give good agreement 
with the Schwarzschild values if we make k as small as we please. If we do not choose a 
equal to unity, then, at the cost of exact agreement between Newtonian and weak-field 
theory, the values for the three tests become cc2 + Bk, a and a, respectively. Dicke (1963) 
has made the point that the experimental evidence agrees with the predictions of general 
relativity only to an accuracy of between 5 and 2076, so, if 5: # 1 and k is chosen suitably, 
this theory may agree with the experimenta1 evidence. 

If we use (27) as our field equation instead of (26), we find 

3 E =  k. 
Since K can be chosen to have any non-zero value, this equation is effectively the same 
as equation (28). It follows that the field equations (26) and (27) lead to identical results. 

9. Zero coupling constant theories 
It will be noticed that the field equations of the last section give exact agreement 

with general relativity for the three tests if we put a = 1 and k = 0. This suggests that 
it may be interesting to consider the field equations of 5s 7 and 8 with a zero coupling 
constant. Of course, the field equations will no longer contain the energy tensor (or 
energy tensor density) of the scalar field and such theories will have no connection with 
the original Yilmaz formulation. The  physical basis, if any, of these theories is obscure, 
but they give an interesting variation on the theme of scalar gravitational theories and 
may be worth noting, if only for their curiosity value. 

The  theories of Nordstrom (1913) and Littlewood (1953) are equivalent to the field 
equations 

C'$,,o = 0 and R = 0 
(see Schild 1962, p. 112). Instead of the field equation C$vr = 0, we use the de Donder 
harmonic coordinate condition 

applied to a static spherically symmetric isotropic space-time. This leads to a metric 
of the form 

ds2 = e -2u  dt2 - e2"(dx2 + dy2 + dz2) 

where U is a function of the radial coordinate r only, and so can be regarded as a function 
of the potential 4 = mjr. 

For the field equation to be used in connection with this space-time we choose the 
same equation R = 0 (or G = 0) as in the Nordstrom theory. The  resulting equations 

K-g>"2gg"y),, = 0 (29) 
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are then those of $ 7 with k = 0. The equation R = 0 gives 

so that 

By choosing a = /3 = 1, we obtain the space-time with metric 

d? = (1+~) -2d t2 - (1+~)2 (dX2+dy2+dz2) .  

This leads to the Schwarzschild values for light-ray deflection and the gravitational 
red shift. The  value for the advance of the perihelion is 8 of the Schwarzschild value, 
as expected by putting k = n = 0 in the results of $7 .  

If, instead of the equation R = 0, we use the equations 

Ed = 0 or MO = 0 (30) 
where MO are defined in $8 ,  we find 

U = x d .  

By choosing U = 1 we obtain the Yilmaz form for space-time, so that the three tests 
are satisfied. 

The equations (29) and (30) are not tensor equations and are invariant only under 
linear transformations of the coordinates. This invariance is no worse than that in Yilmaz’ 
basic formulation of his theory, although Yilmaz’ field equations are covariant. 

10. Conclusion 
The error in Yilmaz’ formulation of his theory has been corrected, resulting in the 

possibility of various tensor density field equations. Unlike Yilmaz’ field equations, 
none of the alternatives discussed here gives exact agreement with general relativity, but 
they give values which are within the limits of observational evidence. 
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